If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+330x-1650=0
a = 5; b = 330; c = -1650;
Δ = b2-4ac
Δ = 3302-4·5·(-1650)
Δ = 141900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{141900}=\sqrt{100*1419}=\sqrt{100}*\sqrt{1419}=10\sqrt{1419}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(330)-10\sqrt{1419}}{2*5}=\frac{-330-10\sqrt{1419}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(330)+10\sqrt{1419}}{2*5}=\frac{-330+10\sqrt{1419}}{10} $
| 165-10x=19x+20 | | 3n-18=5n-30 | | 19r-6=10r+48 | | -2-7x=-6-9x | | 4.9x^2+340x-1360=0 | | 23=4v+7 | | 5(1-5)-2=3x-4 | | 2x+A=(A)(x)+4 | | 2(4y+6)-8=6 | | 4.9x^2+4.9x-300=0 | | |x-5|=|2x+3| | | 4z+30=10z | | 9x+6=x+30 | | 4y−1=2y+13 | | |4x+8|+4=16 | | (2x-1)^2=(x+1)^2 | | (20x)-(15x)=100 | | -15+20=-6+20x-9 | | (15x)-(20x)=100 | | -15-20=-6+20x-9 | | 50x=1150 | | |3x+7|=|2x3| | | 11^(-3x)=3 | | 11^-3x=3 | | x^2+10x-18=126 | | 5/9w=-2 | | 6x^+36x+48=0 | | 3(x+4)-2=2x+1 | | 28=1/4x+4 | | 3x+60=30 | | 5(2x+1)-8x=-3 | | 5x+2(1x+7)=14x-7 |